Sweden – lab accident creates ‘impossible’ nano material

Decrease Font Size Increase Font Size Text Size Print This Page

Could accidental product be best solution yet for cleaning up toxic waste, dangerous chemicals and oil spills?

UptaliteUppsala University researchers have created an unprecedented material with record-breaking properties. And most remarkable of all, this new material — which was thought impossible to make for over a century — was the result of an accident in the lab.

A research team led by Johan Goméz de la Torre made some slight changes to the synthesis parameters of an earlier unsuccessful attempt to create a water-free disordered form of magnesium carbonate — and they left it in the reaction chamber by mistake! It sat there for the entire weekend, and when the researchers returned to the lab the following Monday, a rigid gel had formed.

Surprised and excited, they dried the gel and studied it further. They soon realized that they were onto something quite extraordinary.

Called Upsalite in honour of the university, the material features a surface area of 800 square meters per gram. It’s got the highest surface area measured for a synthesized alkali metal carbonate. And in addition, Upsalite is filled with empty pores all having a diameter smaller than 10 nanometers.

This means that it can SUPERabsorb — or more accurately, adsorb — more water at low relative humidities than the most advanced materials currently in existence.

Once refined, Upsalite could significantly reduce the amount of energy required to control environmental moisture in electronics and in drug delivery. Perhaps more crucially, the material could be used to suck up toxic waste, dangerous chemicals, and oil spills.

“This places the new material in the exclusive class of porous, high surface area materials including mesoporous silica, zeolites, metal organic frameworks, and carbon nanotubes”, noted researcher Maria Strømme through a release. Indeed, it can adsorb more water at low humidities than the best materials previously available — and with less energy.

Key Scientific Publications about Upsalite®


Investigation of the Antibacterial Effect of Upsalite®

This study presents the first evaluation of the antibacterial properties of the material with mesoporous silica and two other magnesium-containing powder materials used as references. All powder materials in this study are sieved to achieve a particle size distribution between 25 and 75 μm. The Gram-positive bacterium Staphylococcus epidermidis is used as the model bacterium due to its prevalence on human skin, its likelihood of developing resistance to antibiotics, for example, from routine exposure to antibiotics secreted in sweat, and because it is found inside affected acne vulgaris pores. Quantification of bacterial viability using a metabolic activity assay with resazurin as the fluorescent indicator shows that Upsalite® exerts a strong antibacterial effect on the bacteria and that alkalinity accounts for the major part of this effect. The results open up for further development of Upsalite® in on-skin applications where bacterial growth inhibition without using antibiotics is deemed favorable.

Link to article



Supersaturation of poorly soluble drugs can be achieved with Upsalite®

In an in vitro study published in the European Journal of Pharmaceutical Sciences it is shown that Upsalite® can be used as a drug carrier with the potential to increase bioavailability of drugs that have dissolution rate- or solubility-limited absorption.  Upsalite® as a drug carrier that can increase the amount of drug available over time and achieve supersaturation of poorly soluble drugs. Three structurally diverse, poorly water-soluble drugs (celecoxib, cinnarizine and griseofulvin) were successfully loaded in Upsalite® and subsequently rapidly released from this carrier. The use of this drug delivery system allowed us to obtain supersaturation of the test drugs in the studied medium, resulting in significant increases in the total amount of released drug,  Cmax and decrease in the time to reach Cmax for all three drugs.

Link to article


Nanostructure and pore size control of template-free synthesised mesoporous magnesium carbonate

The nanostructure of the Upsalite® is revealed and pore size control was achieved without organic templates or swelling agents. By controlling the pore structure of the material the amorphous phase stabilisation exerted on poorly soluble drug compounds can be tuned and the drug delivery rate can be tailored.

Link to the article


Biocompatibility of Upsalite® in contact with whole human blood

A study presented in RCS Advances further explores the biocompatibility properties of Upsalite® focusing on the interactions with blood. No hemolytic activity was found for Upsalite® upon contact with whole human blood and Upsalite® was found to present anticoagulant properties, most probably due to the uptake of Ca2+.These findings are important and promising for the use of Upsalite® in biomedical applications such as in composites for implant materials where Upsalite® may encounter blood.

Link to article


First in-vivo biocompatibility study of Upsalite® is published!

Two years ago the award-winning material Upsalite® was discovered by Maria Strømme and her team at the Ångström Laboratory in Uppsala. The material has recently been suggested as a drug delivery vehicle and as a topical bacteriostatic agent. In a just-published study the first in vivo acute systemic toxicity, skin irritation analyses and in vitro cytotoxicity evaluations of Upsalite® are presented.

Link to article

June 2015

Upsalite® can control drug release rate

In a study published today in the Journal of Pharmaceutical Sciences that release of pharmaceuticals from Upsalite® can be controlled with great precision by choosing the right size of Upsalite® particles. This means that Upsalite® can be used as a drug carrier not only for poorly soluble drugs, but also for substances where you wish to control the time for the drug release. Sometimes a quick effect from a drug is preferable, for example in the case of headache, and sometimes a slower release of a high dose of a drug is desired to reduce the number of doses or increase the possibility of problematic substances to be absorbed following ingestion of a tablet.

Link to article

June 2013

Upsalite® – A Template-Free, Ultra-Adsorbing, High Surface Area Carbonate Nanostructure

We report the template-free, low-temperature synthesis of a stable, amorphous, and anhydrous magnesium carbonate nanostructure with pore sizes below 6 nm and a specific surface area of ∼ 800 m2 g−1, substantially surpassing the surface area of all previously described alkali earth metal carbonates. The moisture sorption of the novel nanostructure is featured by a unique set of properties including an adsorption capacity ∼50% larger than that of the hygroscopic zeolite-Y at low relative humidities and with the ability to retain more than 75% of the adsorbed water when the humidity is decreased from 95% to 5% at room temperature. These properties can be regenerated by heat treatment at temperatures below 100°C.The structure is foreseen to become useful in applications such as humidity control, as industrial adsorbents and filters, in drug delivery and catalysis.

Link to article

You must be logged in to post a comment Login